
PySoundFile Documentation
Release 0.10.0

Bastian Bechtold, Matthias Geier

May 02, 2020

Contents

1 Breaking Changes 2

2 Installation 2

3 Read/Write Functions 2

4 Block Processing 2

5 SoundFile Objects 3

6 RAW Files 3

7 Virtual IO 3

8 Known Issues 4

9 News 4

10 Contributing 5
10.1 Testing . 5
10.2 Coverage . 6
10.3 Documentation . 6

11 API Documentation 6

12 Index 16

Python Module Index 17

Index 18

SoundFile is an audio library based on libsndfile, CFFI and NumPy. Full documentation is available on http:
//pysoundfile.readthedocs.org/.

SoundFile can read and write sound files. File reading/writing is supported through libsndfile, which is a free, cross-
platform, open-source (LGPL) library for reading and writing many different sampled sound file formats that runs

1

https://github.com/bastibe/SoundFile
http://pysoundfile.readthedocs.org/
http://pysoundfile.readthedocs.org/
http://www.mega-nerd.com/libsndfile/

on many platforms including Windows, OS X, and Unix. It is accessed through CFFI, which is a foreign function
interface for Python calling C code. CFFI is supported for CPython 2.6+, 3.x and PyPy 2.0+. SoundFile represents
audio data as NumPy arrays.

SoundFile is BSD licensed (BSD 3-Clause License).
(c) 2013, Bastian Bechtold

1 Breaking Changes

SoundFile has evolved rapidly during the last few releases. Most notably, we changed the import name from import
pysoundfile to import soundfile in 0.7. In 0.6, we cleaned up many small inconsistencies, particularly in
the the ordering and naming of function arguments and the removal of the indexing interface.

In 0.8.0, we changed the default value of always_2d from True to False. Also, the order of arguments of the
write function changed from write(data, file, ...) to write(file, data, ...).

In 0.9.0, we changed the ctype arguments of the buffer_* methods to dtype, using the Numpy dtype notation.
The old ctype arguments still work, but are now officially deprecated.

2 Installation

SoundFile depends on the Python packages CFFI and NumPy, and the system library libsndfile.

In a modern Python, you can use pip install soundfile to download and install the latest release of SoundFile
and its dependencies. On Windows and OS X, this will also install the library libsndfile. On Linux, you need to install
libsndfile using your distribution’s package manager, for example sudo apt-get install libsndfile1.

If you are running on an unusual platform or if you are using an older version of Python, you might need to install
NumPy and CFFI separately, for example using the Anaconda package manager or the Unofficial Windows Binaries
for Python Extension Packages.

3 Read/Write Functions

Data can be written to the file using soundfile.write(), or read from the file using soundfile.read().
SoundFile can open all file formats that libsndfile supports, for example WAV, FLAC, OGG and MAT files (see
Known Issues below about writing OGG files).

Here is an example for a program that reads a wave file and copies it into an FLAC file:

import soundfile as sf

data, samplerate = sf.read('existing_file.wav')
sf.write('new_file.flac', data, samplerate)

4 Block Processing

Sound files can also be read in short, optionally overlapping blocks with soundfile.blocks(). For example, this
calculates the signal level for each block of a long file:

2

http://cffi.readthedocs.org/
https://www.continuum.io/downloads
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.mega-nerd.com/libsndfile/#Features
https://github.com/bastibe/SoundFile#known-issues

import numpy as np
import soundfile as sf

rms = [np.sqrt(np.mean(block**2)) for block in
sf.blocks('myfile.wav', blocksize=1024, overlap=512)]

5 SoundFile Objects

Sound files can also be opened as soundfile.SoundFile objects. Every SoundFile has a specific sample rate,
data format and a set number of channels.

If a file is opened, it is kept open for as long as the SoundFile object exists. The file closes when the object is garbage
collected, but you should use the soundfile.SoundFile.close() method or the context manager to close the
file explicitly:

import soundfile as sf

with sf.SoundFile('myfile.wav', 'r+') as f:
while f.tell() < f.frames:

pos = f.tell()
data = f.read(1024)
f.seek(pos)
f.write(data*2)

All data access uses frames as index. A frame is one discrete time-step in the sound file. Every frame contains as
many samples as there are channels in the file.

6 RAW Files

Pysoundfile can usually auto-detect the file type of sound files. This is not possible for RAW files, though:

import soundfile as sf

data, samplerate = sf.read('myfile.raw', channels=1, samplerate=44100,
subtype='FLOAT')

Note that on x86, this defaults to endian='LITTLE'. If you are reading big endian data (mostly old PowerPC/6800-
based files), you have to set endian='BIG' accordingly.

You can write RAW files in a similar way, but be advised that in most cases, a more expressive format is better and
should be used instead.

7 Virtual IO

If you have an open file-like object, Pysoundfile can open it just like regular files:

import soundfile as sf
with open('filename.flac', 'rb') as f:

data, samplerate = sf.read(f)

Here is an example using an HTTP request:

3

import io
import soundfile as sf
from urllib.request import urlopen

url = "http://tinyurl.com/shepard-risset"
data, samplerate = sf.read(io.BytesIO(urlopen(url).read()))

Note that the above example only works with Python 3.x. For Python 2.x support, replace the third line with:

from urllib2 import urlopen

8 Known Issues

Writing to OGG files can result in empty files with certain versions of libsndfile. See #130 for news on this issue.

9 News

2013-08-27 V0.1.0 Bastian Bechtold: Initial prototype. A simple wrapper for libsndfile in Python

2013-08-30 V0.2.0 Bastian Bechtold: Bugfixes and more consistency with PySoundCard

2013-08-30 V0.2.1 Bastian Bechtold: Bugfixes

2013-09-27 V0.3.0 Bastian Bechtold: Added binary installer for Windows, and context manager

2013-11-06 V0.3.1 Bastian Bechtold: Switched from distutils to setuptools for easier installation

2013-11-29 V0.4.0 Bastian Bechtold: Thanks to David Blewett, now with Virtual IO!

2013-12-08 V0.4.1 Bastian Bechtold: Thanks to Xidorn Quan, FLAC files are not float32 any more.

2014-02-26 V0.5.0 Bastian Bechtold: Thanks to Matthias Geier, improved seeking and a flush() method.

2015-01-19 V0.6.0 Bastian Bechtold: A big, big thank you to Matthias Geier, who did most of the work!

• Switched to float64 as default data type.

• Function arguments changed for consistency.

• Added unit tests.

• Added global read(), write(), blocks() convenience functions.

• Documentation overhaul and hosting on readthedocs.

• Added 'x' open mode.

• Added tell() method.

• Added __repr__() method.

2015-04-12 V0.7.0 Bastian Bechtold: Again, thanks to Matthias Geier for all of his hard work, but also Nils Werner
and Whistler7 for their many suggestions and help.

• Renamed import pysoundfile to import soundfile.

• Installation through pip wheels that contain the necessary libraries for OS X and Windows.

• Removed exclusive_creation argument to write.

• Added truncate() method.

4

https://github.com/bastibe/SoundFile/issues/130

2015-10-20 V0.8.0 Bastian Bechtold: Again, Matthias Geier contributed a whole lot of hard work to this release.

• Changed the default value of always_2d from True to False.

• Numpy is now optional, and only loaded for read and write.

• Added SoundFile.buffer_read and SoundFile.buffer_read_into and SoundFile.
buffer_write, which read/write raw data without involving Numpy.

• Added info function that returns metadata of a sound file.

• Changed the argument order of the write function from write(data, file, ...) to
write(file, data, ...)

And many more minor bug fixes.

2017-02-02 V0.9.0 Bastian Bechtold: Thank you, Matthias Geier, Tomas Garcia, and Todd, for contributions for this
release.

• Adds support for ALAC files.

• Adds new member __libsndfile_version__

• Adds number of frames to info class

• Adds dtype argument to buffer_* methods

• Deprecates ctype argument to buffer_* methods

• Adds official support for Python 3.6

And some minor bug fixes.

2017-11-12 V0.10.0 Bastian Bechtold: Thank you, Matthias Geier, Toni Barth, Jon Peirce, Till Hoffmann, and
Tomas Garcia, for contributions to this release.

• Should now work with cx_freeze.

• Several documentation fixes in the README.

• Removes deprecated ctype argument in favor of dtype in buffer_*().

• Adds SoundFile.frames in favor of now-deprecated __len__().

• Improves performance of blocks and SoundFile.blocks().

• Improves import time by using CFFI’s out of line mode.

10 Contributing

If you find bugs, errors, omissions or other things that need improvement, please create an issue or a pull request at
https://github.com/bastibe/PySoundFile/. Contributions are always welcome!

10.1 Testing

If you fix a bug, you should add a test that exposes the bug (to avoid future regressions), if you add a feature, you
should add tests for it as well.

To run the tests, use:

python setup.py test

5

https://github.com/bastibe/PySoundFile/

This uses py.test; if you haven’t installed it already, it will be downloaded and installed for you.

Note: There is a known problem that prohibits the use of file descriptors on Windows if the libsndfile DLL was
compiled with a different compiler than the Python interpreter. Unfortunately, this is typically the case if the packaged
DLLs are used. To skip the tests which utilize file descriptors, use:

python setup.py test --pytest-args="-knot\ fd"

10.2 Coverage

If you want to measure code coverage, you can use coverage.py. Just install it with:

pip install coverage --user

. . . and run it with:

coverage run --source soundfile.py -m py.test
coverage html

The resulting HTML files will be written to the htmlcov/ directory.

You can even check branch coverage:

coverage run --branch --source soundfile.py -m py.test
coverage html

10.3 Documentation

If you make changes to the documentation, you can re-create the HTML pages on your local system using Sphinx.

You can install it and a few other necessary packages with:

pip install -r doc/requirements.txt --user

To create the HTML pages, use:

python setup.py build_sphinx

The generated files will be available in the directory build/sphinx/html/.

11 API Documentation

SoundFile is an audio library based on libsndfile, CFFI and NumPy.

Sound files can be read or written directly using the functions read() and write(). To read a sound file in a
block-wise fashion, use blocks(). Alternatively, sound files can be opened as SoundFile objects.

For further information, see http://pysoundfile.readthedocs.org/.

soundfile.read(file, frames=-1, start=0, stop=None, dtype=’float64’, always_2d=False,
fill_value=None, out=None, samplerate=None, channels=None, format=None,
subtype=None, endian=None, closefd=True)

Provide audio data from a sound file as NumPy array.

6

http://pytest.org/
http://www.mega-nerd.com/libsndfile/api.html#open_fd
http://nedbatchelder.com/code/coverage/
http://nedbatchelder.com/code/coverage/branch.html
http://sphinx-doc.org/
http://pysoundfile.readthedocs.org/

By default, the whole file is read from the beginning, but the position to start reading can be specified with start
and the number of frames to read can be specified with frames. Alternatively, a range can be specified with start
and stop.

If there is less data left in the file than requested, the rest of the frames are filled with fill_value. If no fill_value
is specified, a smaller array is returned.

Parameters

• file (str or int or file-like object) – The file to read from. See
SoundFile for details.

• frames (int, optional) – The number of frames to read. If frames is negative, the
whole rest of the file is read. Not allowed if stop is given.

• start (int, optional) – Where to start reading. A negative value counts from the
end.

• stop (int, optional) – The index after the last frame to be read. A negative value
counts from the end. Not allowed if frames is given.

• dtype ({'float64', 'float32', 'int32', 'int16'}, optional) –
Data type of the returned array, by default 'float64'. Floating point audio data is
typically in the range from -1.0 to 1.0. Integer data is in the range from -2**15 to
2**15-1 for 'int16' and from -2**31 to 2**31-1 for 'int32'.

Note: Reading int values from a float file will not scale the data to [-1.0, 1.0). If the file con-
tains np.array([42.6], dtype='float32'), you will read np.array([43],
dtype='int32') for dtype='int32'.

Returns

• audiodata (numpy.ndarray or type(out)) – A two-dimensional (frames x channels) NumPy
array is returned. If the sound file has only one channel, a one-dimensional array is returned.
Use always_2d=True to return a two-dimensional array anyway.

If out was specified, it is returned. If out has more frames than available in the file (or if
frames is smaller than the length of out) and no fill_value is given, then only a part of out is
overwritten and a view containing all valid frames is returned.

• samplerate (int) – The sample rate of the audio file.

Other Parameters

• always_2d (bool, optional) – By default, reading a mono sound file will return a one-
dimensional array. With always_2d=True, audio data is always returned as a two-
dimensional array, even if the audio file has only one channel.

• fill_value (float, optional) – If more frames are requested than available in the file, the rest
of the output is be filled with fill_value. If fill_value is not specified, a smaller array is
returned.

• out (numpy.ndarray or subclass, optional) – If out is specified, the data is written into the
given array instead of creating a new array. In this case, the arguments dtype and always_2d
are silently ignored! If frames is not given, it is obtained from the length of out.

• samplerate, channels, format, subtype, endian, closefd – See SoundFile.

7

Examples

>>> import soundfile as sf
>>> data, samplerate = sf.read('stereo_file.wav')
>>> data
array([[0.71329652, 0.06294799],

[-0.26450912, -0.38874483],
...
[0.67398441, -0.11516333]])

>>> samplerate
44100

soundfile.write(file, data, samplerate, subtype=None, endian=None, format=None, closefd=True)
Write data to a sound file.

Note: If file exists, it will be truncated and overwritten!

Parameters

• file (str or int or file-like object) – The file to write to. See
SoundFile for details.

• data (array_like) – The data to write. Usually two-dimensional (frames x channels),
but one-dimensional data can be used for mono files. Only the data types 'float64',
'float32', 'int32' and 'int16' are supported.

Note: The data type of data does not select the data type of the written file. Au-
dio data will be converted to the given subtype. Writing int values to a float file
will not scale the values to [-1.0, 1.0). If you write the value np.array([42],
dtype='int32'), to a subtype='FLOAT' file, the file will then contain np.
array([42.], dtype='float32').

• samplerate (int) – The sample rate of the audio data.

• subtype (str, optional) – See default_subtype() for the default value and
available_subtypes() for all possible values.

Other Parameters format, endian, closefd – See SoundFile.

Examples

Write 10 frames of random data to a new file:

>>> import numpy as np
>>> import soundfile as sf
>>> sf.write('stereo_file.wav', np.random.randn(10, 2), 44100, 'PCM_24')

soundfile.blocks(file, blocksize=None, overlap=0, frames=-1, start=0, stop=None, dtype=’float64’, al-
ways_2d=False, fill_value=None, out=None, samplerate=None, channels=None, for-
mat=None, subtype=None, endian=None, closefd=True)

Return a generator for block-wise reading.

By default, iteration starts at the beginning and stops at the end of the file. Use start to start at a later position
and frames or stop to stop earlier.

8

If you stop iterating over the generator before it’s exhausted, the sound file is not closed. This is normally not
a problem because the file is opened in read-only mode. To close the file properly, the generator’s close()
method can be called.

Parameters

• file (str or int or file-like object) – The file to read from. See
SoundFile for details.

• blocksize (int) – The number of frames to read per block. Either this or out must be
given.

• overlap (int, optional) – The number of frames to rewind between each block.

Yields numpy.ndarray or type(out) – Blocks of audio data. If out was given, and the requested
frames are not an integer multiple of the length of out, and no fill_value was given, the last block
will be a smaller view into out.

Other Parameters

• frames, start, stop – See read().

• dtype ({‘float64’, ‘float32’, ‘int32’, ‘int16’}, optional) – See read().

• always_2d, fill_value, out – See read().

• samplerate, channels, format, subtype, endian, closefd – See SoundFile.

Examples

>>> import soundfile as sf
>>> for block in sf.blocks('stereo_file.wav', blocksize=1024):
>>> pass # do something with 'block'

soundfile.info(file, verbose=False)
Returns an object with information about a SoundFile.

Parameters verbose (bool) – Whether to print additional information.

soundfile.available_formats()
Return a dictionary of available major formats.

Examples

>>> import soundfile as sf
>>> sf.available_formats()
{'FLAC': 'FLAC (FLAC Lossless Audio Codec)',
'OGG': 'OGG (OGG Container format)',
'WAV': 'WAV (Microsoft)',
'AIFF': 'AIFF (Apple/SGI)',
...
'WAVEX': 'WAVEX (Microsoft)',
'RAW': 'RAW (header-less)',
'MAT5': 'MAT5 (GNU Octave 2.1 / Matlab 5.0)'}

soundfile.available_subtypes(format=None)
Return a dictionary of available subtypes.

Parameters format (str) – If given, only compatible subtypes are returned.

9

Examples

>>> import soundfile as sf
>>> sf.available_subtypes('FLAC')
{'PCM_24': 'Signed 24 bit PCM',
'PCM_16': 'Signed 16 bit PCM',
'PCM_S8': 'Signed 8 bit PCM'}

soundfile.check_format(format, subtype=None, endian=None)
Check if the combination of format/subtype/endian is valid.

Examples

>>> import soundfile as sf
>>> sf.check_format('WAV', 'PCM_24')
True
>>> sf.check_format('FLAC', 'VORBIS')
False

soundfile.default_subtype(format)
Return the default subtype for a given format.

Examples

>>> import soundfile as sf
>>> sf.default_subtype('WAV')
'PCM_16'
>>> sf.default_subtype('MAT5')
'DOUBLE'

class soundfile.SoundFile(file, mode=’r’, samplerate=None, channels=None, subtype=None, en-
dian=None, format=None, closefd=True)

Open a sound file.

If a file is opened with mode 'r' (the default) or 'r+', no sample rate, channels or file format need to be
given because the information is obtained from the file. An exception is the 'RAW' data format, which always
requires these data points.

File formats consist of three case-insensitive strings:

• a major format which is by default obtained from the extension of the file name (if known) and which can
be forced with the format argument (e.g. format='WAVEX').

• a subtype, e.g. 'PCM_24'. Most major formats have a default subtype which is used if no subtype is
specified.

• an endian-ness, which doesn’t have to be specified at all in most cases.

A SoundFile object is a context manager, which means if used in a “with” statement, close() is automat-
ically called when reaching the end of the code block inside the “with” statement.

Parameters

• file (str or int or file-like object) – The file to open. This can be a
file name, a file descriptor or a Python file object (or a similar object with the methods
read()/readinto(), write(), seek() and tell()).

10

• mode ({'r', 'r+', 'w', 'w+', 'x', 'x+'}, optional) – Open mode.
Has to begin with one of these three characters: 'r' for reading, 'w' for writing (trun-
cates file) or 'x' for writing (raises an error if file already exists). Additionally, it may
contain '+' to open file for both reading and writing. The character 'b' for binary mode
is implied because all sound files have to be opened in this mode. If file is a file descriptor
or a file-like object, 'w' doesn’t truncate and 'x' doesn’t raise an error.

• samplerate (int) – The sample rate of the file. If mode contains 'r', this is obtained
from the file (except for 'RAW' files).

• channels (int) – The number of channels of the file. If mode contains 'r', this is
obtained from the file (except for 'RAW' files).

• subtype (str, sometimes optional) – The subtype of the sound file. If
mode contains 'r', this is obtained from the file (except for 'RAW' files), if not,
the default value depends on the selected format (see default_subtype()). See
available_subtypes() for all possible subtypes for a given format.

• endian ({'FILE', 'LITTLE', 'BIG', 'CPU'}, sometimes optional) –
The endian-ness of the sound file. If mode contains 'r', this is obtained from the file
(except for 'RAW' files), if not, the default value is 'FILE', which is correct in most
cases.

• format (str, sometimes optional) – The major format of the sound file. If mode
contains 'r', this is obtained from the file (except for 'RAW' files), if not, the default
value is determined from the file extension. See available_formats() for all possible
values.

• closefd (bool, optional) – Whether to close the file descriptor on close(). Only
applicable if the file argument is a file descriptor.

Examples

>>> from soundfile import SoundFile

Open an existing file for reading:

>>> myfile = SoundFile('existing_file.wav')
>>> # do something with myfile
>>> myfile.close()

Create a new sound file for reading and writing using a with statement:

>>> with SoundFile('new_file.wav', 'x+', 44100, 2) as myfile:
>>> # do something with myfile
>>> # ...
>>> assert not myfile.closed
>>> # myfile.close() is called automatically at the end
>>> assert myfile.closed

name
The file name of the sound file.

mode
The open mode the sound file was opened with.

samplerate
The sample rate of the sound file.

11

frames
The number of frames in the sound file.

channels
The number of channels in the sound file.

format
The major format of the sound file.

subtype
The subtype of data in the the sound file.

endian
The endian-ness of the data in the sound file.

format_info
A description of the major format of the sound file.

subtype_info
A description of the subtype of the sound file.

sections
The number of sections of the sound file.

closed
Whether the sound file is closed or not.

extra_info
Retrieve the log string generated when opening the file.

seekable()
Return True if the file supports seeking.

seek(frames, whence=0)
Set the read/write position.

Parameters

• frames (int) – The frame index or offset to seek.

• whence ({SEEK_SET, SEEK_CUR, SEEK_END}, optional) – By default
(whence=SEEK_SET), frames are counted from the beginning of the file.
whence=SEEK_CUR seeks from the current position (positive and negative values are
allowed for frames). whence=SEEK_END seeks from the end (use negative value for
frames).

Returns int – The new absolute read/write position in frames.

Examples

>>> from soundfile import SoundFile, SEEK_END
>>> myfile = SoundFile('stereo_file.wav')

Seek to the beginning of the file:

>>> myfile.seek(0)
0

Seek to the end of the file:

12

>>> myfile.seek(0, SEEK_END)
44100 # this is the file length

tell()
Return the current read/write position.

read(frames=-1, dtype=’float64’, always_2d=False, fill_value=None, out=None)
Read from the file and return data as NumPy array.

Reads the given number of frames in the given data format starting at the current read/write position. This
advances the read/write position by the same number of frames. By default, all frames from the current
read/write position to the end of the file are returned. Use seek() to move the current read/write position.

Parameters

• frames (int, optional) – The number of frames to read. If frames < 0, the
whole rest of the file is read.

• dtype ({'float64', 'float32', 'int32', 'int16'}, optional) –
Data type of the returned array, by default 'float64'. Floating point audio data is
typically in the range from -1.0 to 1.0. Integer data is in the range from -2**15 to
2**15-1 for 'int16' and from -2**31 to 2**31-1 for 'int32'.

Note: Reading int values from a float file will not scale the data to [-1.0, 1.0). If
the file contains np.array([42.6], dtype='float32'), you will read np.
array([43], dtype='int32') for dtype='int32'.

Returns

audiodata (numpy.ndarray or type(out)) – A two-dimensional NumPy (frames x channels)
array is returned. If the sound file has only one channel, a one-dimensional array is returned.
Use always_2d=True to return a two-dimensional array anyway.

If out was specified, it is returned. If out has more frames than available in the file (or if
frames is smaller than the length of out) and no fill_value is given, then only a part of out is
overwritten and a view containing all valid frames is returned. numpy.ndarray or type(out)

Other Parameters

• always_2d (bool, optional) – By default, reading a mono sound file will return a one-
dimensional array. With always_2d=True, audio data is always returned as a two-
dimensional array, even if the audio file has only one channel.

• fill_value (float, optional) – If more frames are requested than available in the file, the rest
of the output is be filled with fill_value. If fill_value is not specified, a smaller array is
returned.

• out (numpy.ndarray or subclass, optional) – If out is specified, the data is written into
the given array instead of creating a new array. In this case, the arguments dtype and
always_2d are silently ignored! If frames is not given, it is obtained from the length of
out.

Examples

>>> from soundfile import SoundFile
>>> myfile = SoundFile('stereo_file.wav')

13

Reading 3 frames from a stereo file:

>>> myfile.read(3)
array([[0.71329652, 0.06294799],

[-0.26450912, -0.38874483],
[0.67398441, -0.11516333]])

>>> myfile.close()

See also:

buffer_read(), write()

buffer_read(frames=-1, dtype=None)
Read from the file and return data as buffer object.

Reads the given number of frames in the given data format starting at the current read/write position. This
advances the read/write position by the same number of frames. By default, all frames from the current
read/write position to the end of the file are returned. Use seek() to move the current read/write position.

Parameters

• frames (int, optional) – The number of frames to read. If frames < 0, the whole
rest of the file is read.

• dtype ({'float64', 'float32', 'int32', 'int16'}) – Audio data will
be converted to the given data type.

Returns buffer – A buffer containing the read data.

See also:

buffer_read_into(), read(), buffer_write()

buffer_read_into(buffer, dtype)
Read from the file into a given buffer object.

Fills the given buffer with frames in the given data format starting at the current read/write position (which
can be changed with seek()) until the buffer is full or the end of the file is reached. This advances the
read/write position by the number of frames that were read.

Parameters

• buffer (writable buffer) – Audio frames from the file are written to this buffer.

• dtype ({'float64', 'float32', 'int32', 'int16'}) – The data type of
buffer.

Returns int – The number of frames that were read from the file. This can be less than the size
of buffer. The rest of the buffer is not filled with meaningful data.

See also:

buffer_read(), read()

write(data)
Write audio data from a NumPy array to the file.

Writes a number of frames at the read/write position to the file. This also advances the read/write position
by the same number of frames and enlarges the file if necessary.

Note that writing int values to a float file will not scale the values to [-1.0, 1.0). If you write the value
np.array([42], dtype='int32'), to a subtype='FLOAT' file, the file will then contain np.
array([42.], dtype='float32').

14

Parameters data (array_like) – The data to write. Usually two-dimensional (frames
x channels), but one-dimensional data can be used for mono files. Only the data types
'float64', 'float32', 'int32' and 'int16' are supported.

Note: The data type of data does not select the data type of the written file. Au-
dio data will be converted to the given subtype. Writing int values to a float file
will not scale the values to [-1.0, 1.0). If you write the value np.array([42],
dtype='int32'), to a subtype='FLOAT' file, the file will then contain np.
array([42.], dtype='float32').

Examples

>>> import numpy as np
>>> from soundfile import SoundFile
>>> myfile = SoundFile('stereo_file.wav')

Write 10 frames of random data to a new file:

>>> with SoundFile('stereo_file.wav', 'w', 44100, 2, 'PCM_24') as f:
>>> f.write(np.random.randn(10, 2))

See also:

buffer_write(), read()

buffer_write(data, dtype)
Write audio data from a buffer/bytes object to the file.

Writes the contents of data to the file at the current read/write position. This also advances the read/write
position by the number of frames that were written and enlarges the file if necessary.

Parameters

• data (buffer or bytes) – A buffer or bytes object containing the audio data to be
written.

• dtype ({'float64', 'float32', 'int32', 'int16'}) – The data type of
the audio data stored in data.

See also:

write(), buffer_read()

blocks(blocksize=None, overlap=0, frames=-1, dtype=’float64’, always_2d=False, fill_value=None,
out=None)

Return a generator for block-wise reading.

By default, the generator yields blocks of the given blocksize (using a given overlap) until the end of the
file is reached; frames can be used to stop earlier.

Parameters

• blocksize (int) – The number of frames to read per block. Either this or out must be
given.

• overlap (int, optional) – The number of frames to rewind between each block.

• frames (int, optional) – The number of frames to read. If frames < 0, the file
is read until the end.

15

• dtype ({'float64', 'float32', 'int32', 'int16'}, optional) –
See read().

Yields numpy.ndarray or type(out) – Blocks of audio data. If out was given, and the requested
frames are not an integer multiple of the length of out, and no fill_value was given, the last
block will be a smaller view into out.

Other Parameters

• always_2d, fill_value, out – See read().

• fill_value (float, optional) – See read().

• out (numpy.ndarray or subclass, optional) – If out is specified, the data is written into
the given array instead of creating a new array. In this case, the arguments dtype and
always_2d are silently ignored!

Examples

>>> from soundfile import SoundFile
>>> with SoundFile('stereo_file.wav') as f:
>>> for block in f.blocks(blocksize=1024):
>>> pass # do something with 'block'

truncate(frames=None)
Truncate the file to a given number of frames.

After this command, the read/write position will be at the new end of the file.

Parameters frames (int, optional) – Only the data before frames is kept, the rest is
deleted. If not specified, the current read/write position is used.

flush()
Write unwritten data to the file system.

Data written with write() is not immediately written to the file system but buffered in memory to be
written at a later time. Calling flush()makes sure that all changes are actually written to the file system.

This has no effect on files opened in read-only mode.

close()
Close the file. Can be called multiple times.

12 Index

• genindex

16

Python Module Index

s
soundfile, 6

17

Index

A
available_formats() (in module soundfile), 9
available_subtypes() (in module soundfile), 9

B
blocks() (in module soundfile), 8
blocks() (soundfile.SoundFile method), 15
buffer_read() (soundfile.SoundFile method), 14
buffer_read_into() (soundfile.SoundFile method),

14
buffer_write() (soundfile.SoundFile method), 15

C
channels (soundfile.SoundFile attribute), 12
check_format() (in module soundfile), 10
close() (soundfile.SoundFile method), 16
closed (soundfile.SoundFile attribute), 12

D
default_subtype() (in module soundfile), 10

E
endian (soundfile.SoundFile attribute), 12
extra_info (soundfile.SoundFile attribute), 12

F
flush() (soundfile.SoundFile method), 16
format (soundfile.SoundFile attribute), 12
format_info (soundfile.SoundFile attribute), 12
frames (soundfile.SoundFile attribute), 11

I
info() (in module soundfile), 9

M
mode (soundfile.SoundFile attribute), 11

N
name (soundfile.SoundFile attribute), 11

R
read() (in module soundfile), 6
read() (soundfile.SoundFile method), 13

S
samplerate (soundfile.SoundFile attribute), 11
sections (soundfile.SoundFile attribute), 12
seek() (soundfile.SoundFile method), 12
seekable() (soundfile.SoundFile method), 12

SoundFile (class in soundfile), 10
soundfile (module), 6
subtype (soundfile.SoundFile attribute), 12
subtype_info (soundfile.SoundFile attribute), 12

T
tell() (soundfile.SoundFile method), 13
truncate() (soundfile.SoundFile method), 16

W
write() (in module soundfile), 8
write() (soundfile.SoundFile method), 14

18

	Breaking Changes
	Installation
	Read/Write Functions
	Block Processing
	SoundFile Objects
	RAW Files
	Virtual IO
	Known Issues
	News
	Contributing
	Testing
	Coverage
	Documentation

	API Documentation
	Index
	Python Module Index
	Index

