

PySoundFile

PySoundFile [https://github.com/bastibe/PySoundFile] is an audio
library based on libsndfile, CFFI and NumPy. Full documentation is
available on http://pysoundfile.readthedocs.org/.

PySoundFile can read and write sound files. File reading/writing is
supported through libsndfile [http://www.mega-nerd.com/libsndfile/],
which is a free, cross-platform, open-source (LGPL) library for reading
and writing many different sampled sound file formats that runs on many
platforms including Windows, OS X, and Unix. It is accessed through
CFFI [http://cffi.readthedocs.org/], which is a foreign function
interface for Python calling C code. CFFI is supported for CPython 2.6+,
3.x and PyPy 2.0+. PySoundFile represents audio data as NumPy arrays.

PySoundFile is BSD licensed (BSD 3-Clause License).

(c) 2013, Bastian Bechtold

Breaking Changes

PySoundFile has evolved rapidly during the last few releases. Most
notably, we changed the import name from import pysoundfile to
import soundfile in 0.7. In 0.6, we cleaned up many small
inconsistencies, particularly in the the ordering and naming of
function arguments and the removal of the indexing interface.

In 0.8.0, we changed the default value of always_2d from True
to False. Also, the order of arguments of the write function
changed from write(data, file, ...) to write(file, data, ...).

Installation

PySoundFile depends on the Python packages CFFI and NumPy, and the
system library libsndfile.

To install the Python dependencies, I recommend using the Anaconda [http://continuum.io/downloads] distribution of Python 3. This will
come with all dependencies pre-installed. To install the dependencies
manually, you can use the conda package manager, which will
install all dependencies using conda install cffi numpy (conda is
also available independently of Anaconda with pip install conda;
conda init).

With CFFI and NumPy installed, you can use pip install pysoundfile
to download and install the latest release of PySoundFile. On Windows
and OS X, this will also install the library libsndfile. On Linux, you
need to install libsndfile using your distribution’s package manager,
for example sudo apt-get install libsndfile1.

Read/Write Functions

Data can be written to the file using soundfile.write(), or read from
the file using soundfile.read(). PySoundFile can open all file formats
that libsndfile supports [http://www.mega-nerd.com/libsndfile/#Features], for example WAV,
FLAC, OGG and MAT files.

Here is an example for a program that reads a wave file and copies it
into an ogg-vorbis file:

import soundfile as sf

data, samplerate = sf.read('existing_file.wav')
sf.write('new_file.ogg', data, samplerate)

Block Processing

Sound files can also be read in short, optionally overlapping blocks
with soundfile.blocks().
For example, this calculates the signal level for each block of a long
file:

import numpy as np
import soundfile as sf

rms = [np.sqrt(np.mean(block**2)) for block in
 sf.blocks('myfile.wav', blocksize=1024, overlap=512)]

SoundFile Objects

Sound files can also be opened as soundfile.SoundFile objects. Every
SoundFile has a specific sample rate, data format and a set number of
channels.

If a file is opened, it is kept open for as long as the SoundFile
object exists. The file closes when the object is garbage collected,
but you should use the soundfile.SoundFile.close() method or the
context manager to close the file explicitly:

import soundfile as sf

with sf.SoundFile('myfile.wav', 'rw') as f:
 while f.tell() < len(f):
 pos = f.tell()
 data = f.read(1024)
 f.seek(pos)
 f.write(data*2)

All data access uses frames as index. A frame is one discrete time-step
in the sound file. Every frame contains as many samples as there are
channels in the file.

RAW Files

Pysoundfile can usually auto-detect the file type of sound files. This
is not possible for RAW files, though:

import soundfile as sf

data, samplerate = sf.read('myfile.raw', channels=1, samplerate=44100,
 subtype='FLOAT')

Note that on x86, this defaults to endian='LITTLE'. If you are
reading big endian data (mostly old PowerPC/6800-based files), you
have to set endian='BIG' accordingly.

You can write RAW files in a similar way, but be advised that in most
cases, a more expressive format is better and should be used instead.

Virtual IO

If you have an open file-like object, Pysoundfile can open it just like
regular files:

import soundfile as sf
with open('filename.flac', 'rb') as f:
 data, samplerate = sf.read(f)

Here is an example using an HTTP request:

import io
import soundfile as sf
from urllib.request import urlopen

url = "http://tinyurl.com/shepard-risset"
data, samplerate = sf.read(io.BytesIO(urlopen(url).read()))

Note that the above example only works with Python 3.x.
For Python 2.x support, replace the third line with:

from urllib2 import urlopen

News

	2013-08-27 V0.1.0 Bastian Bechtold:

	Initial prototype. A simple wrapper for libsndfile in Python

	2013-08-30 V0.2.0 Bastian Bechtold:

	Bugfixes and more consistency with PySoundCard

	2013-08-30 V0.2.1 Bastian Bechtold:

	Bugfixes

	2013-09-27 V0.3.0 Bastian Bechtold:

	Added binary installer for Windows, and context manager

	2013-11-06 V0.3.1 Bastian Bechtold:

	Switched from distutils to setuptools for easier installation

	2013-11-29 V0.4.0 Bastian Bechtold:

	Thanks to David Blewett, now with Virtual IO!

	2013-12-08 V0.4.1 Bastian Bechtold:

	Thanks to Xidorn Quan, FLAC files are not float32 any more.

	2014-02-26 V0.5.0 Bastian Bechtold:

	Thanks to Matthias Geier, improved seeking and a flush() method.

	2015-01-19 V0.6.0 Bastian Bechtold:

	A big, big thank you to Matthias Geier, who did most of the work!

	Switched to float64 as default data type.

	Function arguments changed for consistency.

	Added unit tests.

	Added global read(), write(), blocks() convenience
functions.

	Documentation overhaul and hosting on readthedocs.

	Added 'x' open mode.

	Added tell() method.

	Added __repr__() method.

	2015-04-12 V0.7.0 Bastian Bechtold:

	Again, thanks to Matthias Geier for all of his hard work, but also
Nils Werner and Whistler7 for their many suggestions and help.

	Renamed import pysoundfile to import soundfile.

	Installation through pip wheels that contain the necessary
libraries for OS X and Windows.

	Removed exclusive_creation argument to write.

	Added truncate() method.

	2015-10-20 V0.8.0 Bastian Bechtold:

	Again, Matthias Geier contributed a whole lot of hard work to this
release.

	Changed the default value of always_2d from True to
False.

	Numpy is now optional, and only loaded for read and
write.

	Added SoundFile.buffer_read and
SoundFile.buffer_read_into and SoundFile.buffer_write,
which read/write raw data without involving Numpy.

	Added info function that returns metadata of a sound file.

	Changed the argument order of the write function from
write(data, file, ...) to write(file, data, ...)

And many more minor bug fixes.

Contributing

If you find bugs, errors, omissions or other things that need improvement,
please create an issue or a pull request at
https://github.com/bastibe/PySoundFile/.
Contributions are always welcome!

Testing

If you fix a bug, you should add a test that exposes the bug (to avoid future
regressions), if you add a feature, you should add tests for it as well.

To run the tests, use:

python setup.py test

This uses py.test [http://pytest.org/]; if you haven’t installed it already, it will be downloaded
and installed for you.

Note

There is a known problem [http://www.mega-nerd.com/libsndfile/api.html#open_fd] that prohibits the use of file
descriptors on Windows if the libsndfile DLL was compiled with a different
compiler than the Python interpreter.
Unfortunately, this is typically the case if the packaged DLLs are used.
To skip the tests which utilize file descriptors, use:

python setup.py test --pytest-args="-knot\ fd"

Coverage

If you want to measure code coverage, you can use coverage.py [http://nedbatchelder.com/code/coverage/].
Just install it with:

pip install coverage --user

… and run it with:

coverage run --source soundfile.py -m py.test
coverage html

The resulting HTML files will be written to the htmlcov/ directory.

You can even check branch coverage [http://nedbatchelder.com/code/coverage/branch.html]:

coverage run --branch --source soundfile.py -m py.test
coverage html

Documentation

If you make changes to the documentation, you can re-create the HTML pages
on your local system using Sphinx [http://sphinx-doc.org/].

You can install it and a few other necessary packages with:

pip install -r doc/requirements.txt --user

To create the HTML pages, use:

python setup.py build_sphinx

The generated files will be available in the directory build/sphinx/html/.

API Documentation

PySoundFile is an audio library based on libsndfile, CFFI and NumPy.

Sound files can be read or written directly using the functions
read() and write().
To read a sound file in a block-wise fashion, use blocks().
Alternatively, sound files can be opened as SoundFile objects.

For further information, see http://pysoundfile.readthedocs.org/.

	
soundfile.read(file, frames=-1, start=0, stop=None, dtype='float64', always_2d=False, fill_value=None, out=None, samplerate=None, channels=None, format=None, subtype=None, endian=None, closefd=True)

	Provide audio data from a sound file as NumPy array.

By default, the whole file is read from the beginning, but the
position to start reading can be specified with start and the
number of frames to read can be specified with frames.
Alternatively, a range can be specified with start and stop.

If there is less data left in the file than requested, the rest of
the frames are filled with fill_value.
If no fill_value is specified, a smaller array is returned.

	Parameters

	
	file (str or int or file-like object) – The file to read from. See SoundFile for details.

	frames (int, optional) – The number of frames to read. If frames is negative, the whole
rest of the file is read. Not allowed if stop is given.

	start (int, optional) – Where to start reading. A negative value counts from the end.

	stop (int, optional) – The index after the last frame to be read. A negative value
counts from the end. Not allowed if frames is given.

	dtype ({'float64', 'float32', 'int32', 'int16'}, optional) – Data type of the returned array, by default 'float64'.
Floating point audio data is typically in the range from
-1.0 to 1.0. Integer data is in the range from
-2**15 to 2**15-1 for 'int16' and from -2**31 to
2**31-1 for 'int32'.

Note

Reading int values from a float file will not
scale the data to [-1.0, 1.0). If the file contains
np.array([42.6], dtype='float32'), you will read
np.array([43], dtype='int32') for dtype='int32'.

	Returns

	
	audiodata (numpy.ndarray or type(out)) – A two-dimensional NumPy array is returned, where the channels
are stored along the first dimension, i.e. as columns.
If the sound file has only one channel, a one-dimensional array
is returned. Use always_2d=True to return a two-dimensional
array anyway.

If out was specified, it is returned. If out has more
frames than available in the file (or if frames is smaller
than the length of out) and no fill_value is given, then
only a part of out is overwritten and a view containing all
valid frames is returned.

	samplerate (int) – The sample rate of the audio file.

	Other Parameters

	
	always_2d (bool, optional) – By default, reading a mono sound file will return a
one-dimensional array. With always_2d=True, audio data is
always returned as a two-dimensional array, even if the audio
file has only one channel.

	fill_value (float, optional) – If more frames are requested than available in the file, the
rest of the output is be filled with fill_value. If
fill_value is not specified, a smaller array is returned.

	out (numpy.ndarray or subclass, optional) – If out is specified, the data is written into the given array
instead of creating a new array. In this case, the arguments
dtype and always_2d are silently ignored! If frames is
not given, it is obtained from the length of out.

	samplerate, channels, format, subtype, endian, closefd – See SoundFile.

Examples

>>> import soundfile as sf
>>> data, samplerate = sf.read('stereo_file.wav')
>>> data
array([[0.71329652, 0.06294799],
 [-0.26450912, -0.38874483],
 ...
 [0.67398441, -0.11516333]])
>>> samplerate
44100

	
soundfile.write(file, data, samplerate, subtype=None, endian=None, format=None, closefd=True)

	Write data to a sound file.

Note

If file exists, it will be truncated and overwritten!

	Parameters

	
	file (str or int or file-like object) – The file to write to. See SoundFile for details.

	data (array_like) – The data to write. Usually two-dimensional (channels x frames),
but one-dimensional data can be used for mono files.
Only the data types 'float64', 'float32', 'int32'
and 'int16' are supported.

Note

The data type of data does not select the data
type of the written file. Audio data will be
converted to the given subtype. Writing int values
to a float file will not scale the values to
[-1.0, 1.0). If you write the value np.array([42],
dtype='int32'), to a subtype='FLOAT' file, the
file will then contain np.array([42.],
dtype='float32').

	samplerate (int) – The sample rate of the audio data.

	subtype (str, optional) – See default_subtype() for the default value and
available_subtypes() for all possible values.

	Other Parameters

	format, endian, closefd – See SoundFile.

Examples

Write 10 frames of random data to a new file:

>>> import numpy as np
>>> import soundfile as sf
>>> sf.write('stereo_file.wav', np.random.randn(10, 2), 44100, 'PCM_24')

	
soundfile.blocks(file, blocksize=None, overlap=0, frames=-1, start=0, stop=None, dtype='float64', always_2d=False, fill_value=None, out=None, samplerate=None, channels=None, format=None, subtype=None, endian=None, closefd=True)

	Return a generator for block-wise reading.

By default, iteration starts at the beginning and stops at the end
of the file. Use start to start at a later position and frames
or stop to stop earlier.

If you stop iterating over the generator before it’s exhausted,
the sound file is not closed. This is normally not a problem
because the file is opened in read-only mode. To close the file
properly, the generator’s close() method can be called.

	Parameters

	
	file (str or int or file-like object) – The file to read from. See SoundFile for details.

	blocksize (int) – The number of frames to read per block.
Either this or out must be given.

	overlap (int, optional) – The number of frames to rewind between each block.

	Yields

	numpy.ndarray or type(out) – Blocks of audio data.
If out was given, and the requested frames are not an integer
multiple of the length of out, and no fill_value was given,
the last block will be a smaller view into out.

	Other Parameters

	
	frames, start, stop – See read().

	dtype ({‘float64’, ‘float32’, ‘int32’, ‘int16’}, optional) – See read().

	always_2d, fill_value, out – See read().

	samplerate, channels, format, subtype, endian, closefd – See SoundFile.

Examples

>>> import soundfile as sf
>>> for block in sf.blocks('stereo_file.wav', blocksize=1024):
>>> pass # do something with 'block'

	
soundfile.info(file, verbose=False)

	Returns an object with information about a SoundFile.

	Parameters

	verbose (bool) – Whether to print additional information.

	
soundfile.available_formats()

	Return a dictionary of available major formats.

Examples

>>> import soundfile as sf
>>> sf.available_formats()
{'FLAC': 'FLAC (FLAC Lossless Audio Codec)',
 'OGG': 'OGG (OGG Container format)',
 'WAV': 'WAV (Microsoft)',
 'AIFF': 'AIFF (Apple/SGI)',
 ...
 'WAVEX': 'WAVEX (Microsoft)',
 'RAW': 'RAW (header-less)',
 'MAT5': 'MAT5 (GNU Octave 2.1 / Matlab 5.0)'}

	
soundfile.available_subtypes(format=None)

	Return a dictionary of available subtypes.

	Parameters

	format (str) – If given, only compatible subtypes are returned.

Examples

>>> import soundfile as sf
>>> sf.available_subtypes('FLAC')
{'PCM_24': 'Signed 24 bit PCM',
 'PCM_16': 'Signed 16 bit PCM',
 'PCM_S8': 'Signed 8 bit PCM'}

	
soundfile.check_format(format, subtype=None, endian=None)

	Check if the combination of format/subtype/endian is valid.

Examples

>>> import soundfile as sf
>>> sf.check_format('WAV', 'PCM_24')
True
>>> sf.check_format('FLAC', 'VORBIS')
False

	
soundfile.default_subtype(format)

	Return the default subtype for a given format.

Examples

>>> import soundfile as sf
>>> sf.default_subtype('WAV')
'PCM_16'
>>> sf.default_subtype('MAT5')
'DOUBLE'

	
class soundfile.SoundFile(file, mode='r', samplerate=None, channels=None, subtype=None, endian=None, format=None, closefd=True)

	Open a sound file.

If a file is opened with mode 'r' (the default) or
'r+', no sample rate, channels or file format need to be
given because the information is obtained from the file. An
exception is the 'RAW' data format, which always requires
these data points.

File formats consist of three case-insensitive strings:

	a major format which is by default obtained from the
extension of the file name (if known) and which can be
forced with the format argument (e.g. format='WAVEX').

	a subtype, e.g. 'PCM_24'. Most major formats have a
default subtype which is used if no subtype is specified.

	an endian-ness, which doesn’t have to be specified at all in
most cases.

A SoundFile object is a context manager, which means
if used in a “with” statement, close() is automatically
called when reaching the end of the code block inside the “with”
statement.

	Parameters

	
	file (str or int or file-like object) – The file to open. This can be a file name, a file
descriptor or a Python file object (or a similar object with
the methods read()/readinto(), write(),
seek() and tell()).

	mode ({'r', 'r+', 'w', 'w+', 'x', 'x+'}, optional) – Open mode. Has to begin with one of these three characters:
'r' for reading, 'w' for writing (truncates file)
or 'x' for writing (raises an error if file already
exists). Additionally, it may contain '+' to open
file for both reading and writing.
The character 'b' for binary mode is implied because
all sound files have to be opened in this mode.
If file is a file descriptor or a file-like object,
'w' doesn’t truncate and 'x' doesn’t raise an error.

	samplerate (int) – The sample rate of the file. If mode contains 'r',
this is obtained from the file (except for 'RAW' files).

	channels (int) – The number of channels of the file.
If mode contains 'r', this is obtained from the file
(except for 'RAW' files).

	subtype (str, sometimes optional) – The subtype of the sound file. If mode contains 'r',
this is obtained from the file (except for 'RAW'
files), if not, the default value depends on the selected
format (see default_subtype()).
See available_subtypes() for all possible subtypes for
a given format.

	endian ({'FILE', 'LITTLE', 'BIG', 'CPU'}, sometimes optional) – The endian-ness of the sound file. If mode contains
'r', this is obtained from the file (except for
'RAW' files), if not, the default value is 'FILE',
which is correct in most cases.

	format (str, sometimes optional) – The major format of the sound file. If mode contains
'r', this is obtained from the file (except for
'RAW' files), if not, the default value is determined
from the file extension. See available_formats() for
all possible values.

	closefd (bool, optional) – Whether to close the file descriptor on close(). Only
applicable if the file argument is a file descriptor.

Examples

>>> from soundfile import SoundFile

Open an existing file for reading:

>>> myfile = SoundFile('existing_file.wav')
>>> # do something with myfile
>>> myfile.close()

Create a new sound file for reading and writing using a with
statement:

>>> with SoundFile('new_file.wav', 'x+', 44100, 2) as myfile:
>>> # do something with myfile
>>> # ...
>>> assert not myfile.closed
>>> # myfile.close() is called automatically at the end
>>> assert myfile.closed

	
name

	The file name of the sound file.

	
mode

	The open mode the sound file was opened with.

	
samplerate

	The sample rate of the sound file.

	
channels

	The number of channels in the sound file.

	
format

	The major format of the sound file.

	
subtype

	The subtype of data in the the sound file.

	
endian

	The endian-ness of the data in the sound file.

	
format_info

	A description of the major format of the sound file.

	
subtype_info

	A description of the subtype of the sound file.

	
sections

	The number of sections of the sound file.

	
closed

	Whether the sound file is closed or not.

	
extra_info

	Retrieve the log string generated when opening the file.

	
seekable()

	Return True if the file supports seeking.

	
seek(frames, whence=0)

	Set the read/write position.

	Parameters

	
	frames (int) – The frame index or offset to seek.

	whence ({SEEK_SET, SEEK_CUR, SEEK_END}, optional) – By default (whence=SEEK_SET), frames are counted from
the beginning of the file.
whence=SEEK_CUR seeks from the current position
(positive and negative values are allowed for frames).
whence=SEEK_END seeks from the end (use negative value
for frames).

	Returns

	int – The new absolute read/write position in frames.

Examples

>>> from soundfile import SoundFile, SEEK_END
>>> myfile = SoundFile('stereo_file.wav')

Seek to the beginning of the file:

>>> myfile.seek(0)
0

Seek to the end of the file:

>>> myfile.seek(0, SEEK_END)
44100 # this is the file length

	
tell()

	Return the current read/write position.

	
read(frames=-1, dtype='float64', always_2d=False, fill_value=None, out=None)

	Read from the file and return data as NumPy array.

Reads the given number of frames in the given data format
starting at the current read/write position. This advances the
read/write position by the same number of frames.
By default, all frames from the current read/write position to
the end of the file are returned.
Use seek() to move the current read/write position.

	Parameters

	
	frames (int, optional) – The number of frames to read. If frames < 0, the whole
rest of the file is read.

	dtype ({'float64', 'float32', 'int32', 'int16'}, optional) – Data type of the returned array, by default 'float64'.
Floating point audio data is typically in the range from
-1.0 to 1.0. Integer data is in the range from
-2**15 to 2**15-1 for 'int16' and from
-2**31 to 2**31-1 for 'int32'.

Note

Reading int values from a float file will not
scale the data to [-1.0, 1.0). If the file contains
np.array([42.6], dtype='float32'), you will read
np.array([43], dtype='int32') for
dtype='int32'.

	Returns

	audiodata (numpy.ndarray or type(out)) – A two-dimensional NumPy array is returned, where the
channels are stored along the first dimension, i.e. as
columns. If the sound file has only one channel, a
one-dimensional array is returned. Use always_2d=True
to return a two-dimensional array anyway.

If out was specified, it is returned. If out has more
frames than available in the file (or if frames is
smaller than the length of out) and no fill_value is
given, then only a part of out is overwritten and a view
containing all valid frames is returned. numpy.ndarray or
type(out)

	Other Parameters

	
	always_2d (bool, optional) – By default, reading a mono sound file will return a
one-dimensional array. With always_2d=True, audio data
is always returned as a two-dimensional array, even if the
audio file has only one channel.

	fill_value (float, optional) – If more frames are requested than available in the file,
the rest of the output is be filled with fill_value. If
fill_value is not specified, a smaller array is
returned.

	out (numpy.ndarray or subclass, optional) – If out is specified, the data is written into the given
array instead of creating a new array. In this case, the
arguments dtype and always_2d are silently ignored! If
frames is not given, it is obtained from the length of
out.

Examples

>>> from soundfile import SoundFile
>>> myfile = SoundFile('stereo_file.wav')

Reading 3 frames from a stereo file:

>>> myfile.read(3)
array([[0.71329652, 0.06294799],
 [-0.26450912, -0.38874483],
 [0.67398441, -0.11516333]])
>>> myfile.close()

See also

buffer_read(), write()

	
buffer_read(frames=-1, ctype='double')

	Read from the file and return data as buffer object.

Reads the given number of frames in the given data format
starting at the current read/write position. This advances the
read/write position by the same number of frames.
By default, all frames from the current read/write position to
the end of the file are returned.
Use seek() to move the current read/write position.

	Parameters

	
	frames (int, optional) – The number of frames to read. If frames < 0, the whole
rest of the file is read.

	ctype ({'double', 'float', 'int', 'short'}, optional) – Audio data will be converted to the given C data type.

	Returns

	buffer – A buffer containing the read data.

See also

buffer_read_into(), read(), buffer_write()

	
buffer_read_into(buffer, ctype='double')

	Read from the file into a buffer object.

Reads the given number of frames in the given data format
starting at the current read/write position. This advances the
read/write position by the same number of frames.
By default, all frames from the current read/write position to
the end of the file are returned.
Use seek() to move the current read/write position.

	Parameters

	out (writable buffer, optional) – If specified, audio data from the file is written to this
buffer instead of a newly created buffer.

	Returns

	num_read (int) – The number of frames that were read from the file.
This can be less than the size of buffer.
The rest of the buffer is not filled with meaningful data.

See also

buffer_read(), read()

	
write(data)

	Write audio data from a NumPy array to the file.

Writes a number of frames at the read/write position to the
file. This also advances the read/write position by the same
number of frames and enlarges the file if necessary.

Note that writing int values to a float file will not scale
the values to [-1.0, 1.0). If you write the value
np.array([42], dtype='int32'), to a subtype='FLOAT'
file, the file will then contain np.array([42.],
dtype='float32').

	Parameters

	data (array_like) – The data to write. Usually two-dimensional (channels x
frames), but one-dimensional data can be used for mono
files. Only the data types 'float64', 'float32',
'int32' and 'int16' are supported.

Note

The data type of data does not select the
data type of the written file. Audio data will be
converted to the given subtype. Writing int values
to a float file will not scale the values to
[-1.0, 1.0). If you write the value np.array([42],
dtype='int32'), to a subtype='FLOAT' file, the
file will then contain np.array([42.],
dtype='float32').

Examples

>>> import numpy as np
>>> from soundfile import SoundFile
>>> myfile = SoundFile('stereo_file.wav')

Write 10 frames of random data to a new file:

>>> with SoundFile('stereo_file.wav', 'w', 44100, 2, 'PCM_24') as f:
>>> f.write(np.random.randn(10, 2))

See also

buffer_write(), read()

	
buffer_write(data, ctype)

	Write audio data from a buffer/bytes object to the file.

Writes a number of frames at the read/write position to the
file. This also advances the read/write position by the same
number of frames and enlarges the file if necessary.

	Parameters

	
	data (buffer or bytes) – A buffer object or bytes containing the audio data to be
written.

	ctype ({'double', 'float', 'int', 'short'}, optional) – The data type of the audio data stored in buffer.

See also

write(), buffer_read()

	
blocks(blocksize=None, overlap=0, frames=-1, dtype='float64', always_2d=False, fill_value=None, out=None)

	Return a generator for block-wise reading.

By default, the generator yields blocks of the given
blocksize (using a given overlap) until the end of the file
is reached; frames can be used to stop earlier.

	Parameters

	
	blocksize (int) – The number of frames to read per block. Either this or out
must be given.

	overlap (int, optional) – The number of frames to rewind between each block.

	frames (int, optional) – The number of frames to read.
If frames < 1, the file is read until the end.

	dtype ({'float64', 'float32', 'int32', 'int16'}, optional) – See read().

	Yields

	numpy.ndarray or type(out) – Blocks of audio data.
If out was given, and the requested frames are not an
integer multiple of the length of out, and no
fill_value was given, the last block will be a smaller
view into out.

	Other Parameters

	always_2d, fill_value, out – See read().

Examples

>>> from soundfile import SoundFile
>>> with SoundFile('stereo_file.wav') as f:
>>> for block in f.blocks(blocksize=1024):
>>> pass # do something with 'block'

	
truncate(frames=None)

	Truncate the file to a given number of frames.

After this command, the read/write position will be at the new
end of the file.

	Parameters

	frames (int, optional) – Only the data before frames is kept, the rest is deleted.
If not specified, the current read/write position is used.

	
flush()

	Write unwritten data to the file system.

Data written with write() is not immediately written to
the file system but buffered in memory to be written at a later
time. Calling flush() makes sure that all changes are
actually written to the file system.

This has no effect on files opened in read-only mode.

	
close()

	Close the file. Can be called multiple times.

Index

	Index

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 soundfile	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | I
 | M
 | N
 | R
 | S
 | T
 | W

A

 	
 	available_formats() (in module soundfile)

 	
 	available_subtypes() (in module soundfile)

B

 	
 	blocks() (in module soundfile)

 	(soundfile.SoundFile method)

 	
 	buffer_read() (soundfile.SoundFile method)

 	buffer_read_into() (soundfile.SoundFile method)

 	buffer_write() (soundfile.SoundFile method)

C

 	
 	channels (soundfile.SoundFile attribute)

 	check_format() (in module soundfile)

 	
 	close() (soundfile.SoundFile method)

 	closed (soundfile.SoundFile attribute)

D

 	
 	default_subtype() (in module soundfile)

E

 	
 	endian (soundfile.SoundFile attribute)

 	
 	extra_info (soundfile.SoundFile attribute)

F

 	
 	flush() (soundfile.SoundFile method)

 	
 	format (soundfile.SoundFile attribute)

 	format_info (soundfile.SoundFile attribute)

I

 	
 	info() (in module soundfile)

M

 	
 	mode (soundfile.SoundFile attribute)

N

 	
 	name (soundfile.SoundFile attribute)

R

 	
 	read() (in module soundfile)

 	(soundfile.SoundFile method)

S

 	
 	samplerate (soundfile.SoundFile attribute)

 	sections (soundfile.SoundFile attribute)

 	seek() (soundfile.SoundFile method)

 	seekable() (soundfile.SoundFile method)

 	
 	SoundFile (class in soundfile)

 	soundfile (module)

 	subtype (soundfile.SoundFile attribute)

 	subtype_info (soundfile.SoundFile attribute)

T

 	
 	tell() (soundfile.SoundFile method)

 	
 	truncate() (soundfile.SoundFile method)

W

 	
 	write() (in module soundfile)

 	(soundfile.SoundFile method)

 nav.xhtml

 Table of Contents

 		
 PySoundFile

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

